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Abstract
We study the properties of a simple lattice model of repulsive particles diffusing
in a pinning landscape. The behaviour of the model is very similar to the
observed physics of vortices in superconductors. We compare and discuss
the equilibrium phase diagram, creep dynamics, Bean critical state profiles,
hysteresis of magnetization loops (including the second peak feature) and, in
particular, ‘ageing’ in relaxations.

PACS numbers: 7510, 7425H

Important dynamical phenomena ranging from slow relaxations or hysteresis, to the anomalous
‘second peak’ in magnetization loops, are found in vortex physics of many different
superconductors within a broad range of material parameters. This observation suggests that
some basic general mechanisms are responsible for the observed phenomenology [1–4] and
that schematic models from statistical mechanics can be successfully used to describe vortex
matter [1–7].

We consider here a simple statistical mechanics model that appears to reproduce a very
wide range of properties of vortices, ranging from dynamical behaviours to phase transitions.
The model is an extension of a multiple-occupancy cellular-automaton-like model recently
introduced by Bassler and Paczuski (BP) [7] to study vortex dynamics at the coarse-grained
level. We introduce the vortex Hamiltonian in order to be able to consider non-zero-temperature
effects in a consistent way and study them by Monte Carlo (MC) and replica theory methods.
Our extension of the BP model also limits the occupancy of the individual lattice sites to
correctly take into account the finiteness of the upper critical field. This point is of crucial
importance for the phenomenological predictions of the model. This leads us to a restricted
occupancy model (ROM).

We find that even the two-dimensional version of the model is able to qualitatively
reproduce many features similar to those observed in real superconducting samples, including
a reentrant equilibrium phase diagram, creep dynamics, hysteresis of magnetization loops,
‘second peak’ and others. Here, in particular, we describe its off-equilibrium magnetic
properties. The model, simple and thus tractable, nevertheless appears to capture significant
aspects of the essential physics and helps to establish a simple unified reference frame.
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The model. A detailed description of the interaction potential, U(�r), between vortices
depends on the considered region in the temperature–magnetic field (T –H ) plane. For instance,
at low field the London approximation can be used to derive two-body potentials [2], whereas
at elevated fields other approximations, such as the lowest Landau level approximation, may
become relevant (see e.g. [8]). As in the BP model, we consider here a coarse-grained lattice
version of an interacting vortex system, with a coarse-graining length scale, l0, of the order of
the natural screening length of the problem (typically, the magnetic penetration length λ). After
coarse graining, the original interaction potential, U , is reduced to an effective Hamiltonian
coupling A. In this way a drastic reduction of degrees of freedom is accomplished and the
resulting schematic effective model can be more easily dealt with. The price to pay is the
loss of information on scales smaller than l0. However, some general features of the system
behaviour can survive at the level of the coarse-grained description. In the above perspective,
we consider below only the essential properties of vortex interaction, i.e. a mutual repulsion
amongst vortices together with a spatially inhomogeneous pinning interaction. The present
description can, of course, be refined by reducing the value of l0. We consider the Hamiltonian

H = 1
2

∑
ij

niAijnj − 1
2

∑
i

Aiini −
∑
i

A
p
i ni . (1)

In equation (1), ni ∈ {0, . . . , Nc2} is an integer occupancy variable equal to the number of
particles on site i. The parameter Nc2 importantly bounds the particle density per site below
a critical value and represents the upper critical field Bc2 in type-II superconductors. Particles
also have a ‘charge’ si = ±1 and neighbouring particles with opposite ‘charge’ annihilate.
The first term in equation (1) represents the repulsion between the particles [2]. Since the
coarse-graining length is taken to be of order λ, we choose a finite-range potential: Aii = A0;
Aij = A1 if i and j are nearest neighbours;Aij = 0 for all other pairs of sites. The second term
in equation (1) just normalizes the particle self-interaction energy. The third term corresponds
to a random pinning potential, with a given distribution P(Ap), acting on a fraction p of lattice
sites (below we use p = 1/2). For simplicity we choose a delta-distributed random pinning:
P(Ap) = (1−p)δ(Ap)+pδ(Ap−Ap0 ). To control the overall system ‘charge density’ we can
add a chemical potential term −µ∑

i Si to the above Hamiltonian (Si = sini). The parameters
entering the model can be qualitatively related to material parameters of superconductors. The
inter-vortex coupling A0 sets the energy scale. The ratio κ∗ = A1/A0 can be related to the
Ginzburg–Landau parameter1 κ = λ/ξ and, in general, is expected to be an increasing function
of κ . The last parameter Ap is a fraction of A0.

To understand the equilibrium properties of the ROM we briefly consider its replica mean-
field (MF) theory. In this approximation the equilibrium phase diagram in the plane (H ∗, T ∗)
(where T ∗ = kBT/A1 and H ∗ = µ/kBT ) can be analytically dealt with (see figure 1). In
absence of disorder it clearly shows a reentrant phase transition from a high-temperature low-
density fluid phase to an ordered phase, in analogy to predictions in superconductors [1, 5].

For moderate values of the pinning energy (Ap0 � A1), a second-order transition still takes
place, which at sufficiently strong pinning is expected to become a ‘glassy’ transition, as is
seen in random-field Ising models [9]. For the two-dimensional lattice we consider below
(in the limit Ap → 0), a numerical investigation is consistent with a first-order transition. In
MF theory, the extension of the low-T phase shrinks by increasing Ap0 (i.e. the highest critical
temperature, T ∗

m, decreases) and the higher is κ∗ the smaller is the reentrant region. These
findings are in agreement with experimental results on vortex phase diagrams (see [1] or, for
instance, 2H-NbSe2 superconductors from [10]).

1 Asymptotically, the vortex line segment interaction is exponential, V (r) ∼ V0 exp(−r/√2λ) [2]. One can write
A0/A1 ∝ V (0)/V (const × ξ) �⇒ 1/κ∗ ∝ exp(const/κ).
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Figure 1. Main frame: the MF phase diagram of the ROM in the small-pinning-strength regime
(Ap0 < A0), in the plane (H ∗, T ∗) (here H ∗ = µ/kBT , T ∗ = T/A1 are the dimensionless
chemical potential and temperature), for κ∗ = 10 andAp0 = 0.0; 0.5; 0.75 (respectively full, dotted
and dashed curves) and κ∗ = 3.3 and Ap0 = 0.0 (long-dashed curve). Inset: the magnetization
profile, M(x), as a function of the transversal spatial coordinate x/L (L is the system linear size),
recorded while ramping the external field, Next (for the shown values), in the two-dimensional
ROM (κ∗ = 0.26, T = 0.3, γ = 1.1 × 10−3). Notice the change in shapes for Next smaller or
larger than Np � 13.5 (filled versus empty symbols).

We now go beyond MF theory and discuss the dynamical behaviour of the model. We
performed MC simulations on a two-dimensional square lattice system (we use typically
L2 = 322) described by equation (1). The system is periodic in the y-direction and has
the two opposite edges in the y-direction in contact with a reservoir of particles. The reservoir
is described by H withApi = 0 ∀i and kept at a given densityNext. Particles undergo diffusive
dynamics and are introduced and escape the system only through the reservoir. The parameters
of our simulations are usually A0 = 1.0; Ap0 = 0.3; Nc2 = 27. We have sampled several
values of κ∗ ∈ [0, 0.3].

We are interested in the dynamical properties of the system in the low-T ∗ region of the
above phase diagram. Here the two-dimensional model has interesting magnetic hysteretic
behaviours. In our MC simulations we rampNext (starting from zero and later back to zero) at
a given rate γ = #N0/τ and record the magnetization,M = Nin −Next (Nin = 〈∑i sini〉/Ld
is the ‘charge’ density inside the system) as a function of Next. Such a ramping induces a
Bean-like profile in our lattice (inset of figure 1) with a structure similar to some experimental
data (see, for instance, [11]).

At low temperatures2 (T � 5), a pronounced hysteretic magnetization loop is seen (see
figure 2), and when κ∗ is high enough (κ∗ � 0.25) a definite second peak appears in M . In
the present case the origin of the second peak is very simple. At high density and κ∗, groups

2 We use A0 = 1.0 as the energy unit and set kB = 1.
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Figure 2. Main frame: the magnetization,M , as a function of the applied field density,Next , in the
two-dimensional ROM for κ∗ = 0.1, 0.26 at T = 0.3 and the shown sweep rates γ . The locations
of the peak, different in the increasing and decreasing branches, depend on γ and approach the
same value in the limit γ → 0. Inset: the equilibrium value ofM (i.e. when γ → 0) for κ∗ = 0.26
at T = 0.3.

of vortices, frustrated in minimizing their repulsive interaction energy, are forced to cluster
together, forming macroscopically extended energetic barriers, which cage other diffusing
vortices. In figure 3 we plot the average energy barrier,#E(Next), that a particle meets during
the same runs for M as shown in figure 2. A ‘trial’ vortex approaching groups of clustered
vortices has to pass over these barriers to move further. This dynamically generates the second
peak. The final decrease inM at highNext is, here, due to a ‘softening’ of these barriers caused
by saturation effects related to the finite value ofNc2. The first peak in the magnetization stems
from the fact that density variations in the reservoir are only slowly transmitted in the system
when it is in the low-density ‘fluid’ phase. The second peak and hysteretic loops at moderate
to high κ∗ are also present when Ap0 → 0 (Ap0 also determines the difference in the amplitude
of |M| between the increasing and decreasing ramps). Very similar magnetization data are
observed in a number of different superconductors from intermediate to high κ values (see, for
instance, [4, 10, 12]).

The actual shape of loops strongly depends on the parameters of the dynamics (and system
size). In particular, the sweep rate of the external field, γ , is very important. As soon as the
inverse sweep rate is smaller than the characteristic relaxation time (which can be extremely
long, inaccessible on usual observation time scales, see below) strong off-equilibrium effects
are present, such as metastability or ‘memory’ and ‘ageing’ [3, 10, 12]. As a first example of
these facts, we show in the right inset of figure 3 the dependence of the second peak height,
Mp, on γ . At low temperatures (T � 1) and not too low κ∗ (κ∗ � 0.28),Mp is approximately
logarithmically dependent on γ over several decades:

Mp(γ ) � M0 +#M ln(γ ). (2)
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Figure 3. Main frame: the average energy barrier, #E, that a particle meets during diffusion in
the same ROM lattices as figure 2. Inset right: the second magnetization peak height in the ROM
as a function of the sweep rate γ for κ∗ = A1/A0 = 0.28 at T = 0.3. Inset left: the second
magnetization peak, Mp (A m2 × 103), in a single crystal of YBa2Cu4O8 at temperature 20 K as
a function of the sweep rate, γ (mT s−1) (from [13]).

Such a behaviour approaches a power law Mp ∼ γ x at lower κ∗ (for instance, x ∼ 1/2 at
κ∗ = 0.26). Eventually, when γ is smaller than a characteristic threshold, γt ,Mp exponentially
saturates to its asymptotic value (this usually is orders of magnitude smaller than Mp(γ ) at
high γ ). Interestingly these findings are also very close to what is experimentally observed
in superconductors [3, 4]; an example from an YBa2Cu4O8 sample (from [13]) is given in the
left inset of figure 3. The threshold, γt , is strongly dependent on the system density Nin (and
system size) and is a rapidly decreasing function of κ∗; for instance at T = 0.3, forNext = Np
(Np is the location of Mp), γt|κ∗=0.26 � 4.5 × 10−5 but γt|κ∗=0.28 � 10−6. γ−1

t (T ,Nin; κ∗, L)
is a measure of the system characteristic equilibration times (which can be huge).

Seemingly a dynamical phenomenon, in the ROM the second peak is related to a
true transition: in the γ → 0 limit, its location, Np, is associated with a sharp jump in
Meq ≡ limγ→0 M(γ ), where its fluctuations increase with system size (see the inset of figure 2).
These findings are consistent with experiments (for instance, see [10]) and to some extents
reconcile opposite descriptions (‘static’ versus ‘dynamic’) of the phenomenon.

It is also interesting to consider the ‘creep rate’, Q = ∂ lnM
∂ ln γ , which is often associated

with a measure of the intrinsic energy barriers in the creep process [3]. Experimentally, Q
is a non-trivial function of the magnetic field (see for instance [3, 13]). We find that, due to
the very long relaxation times, Q(Next) is in itself a (slowly varying) function of γ , up to
when γ is smaller than the smallest γt . In figure 4 we show how Q depends on γ in the
ROM: for T = 0.3 and κ∗ = 0.28 we plot as a function of Next the average of Q over two
different γ intervals, γ ∈ [5 × 10−3, 10−1] (filled circles) and γ ∈ [5 × 10−4, 5 × 10−3] (filled
squares). The difference between the two is apparent. We note a remarkable correspondence
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Figure 4. Main frame: for the same ROMs as the right inset of figure 3 with κ∗ = 0.28, the
‘creep rate’ Q ≡ ∂ lnM

∂ ln γ averaged over the intervals γ ∈ [5 × 10−3, 10−1] (filled circles) and

γ ∈ [5 × 10−4, 5 × 10−3] (filled squares), is plotted as a function of Next . For comparison, a
corresponding magnetization loop (M → M/4 to have a clear scale on the y-axis) is also shown
(dotted curve). Inset: the creep rate (for γ ∈ [10, 100] mT s−1, full curve) and magnetization loop
(4 × 102 A m2, dotted curve) as a function of the external magnetic field µ0H (T) in the same
YBa2Cu4O8 sample as figure 3.

with experimental data for YBa2Cu4O8, shown for the quoted sample in the inset of figure 4.
The presence of the above ‘memory’ effects indicate that the system, on the observed time

scales, can be well off equilibrium. To reveal the underlying non-stationarity of the dynamics
we consider two time correlation functions and, at a given Next, we record3 (t > tw)

C(t, tw) = 〈[Nin(t)−Nin(tw)]
2〉. (3)

Figure 5 clearly shows that C(t, tw) exhibits strong ‘ageing’: it explicitly depends on both
times, in contrast to situations close to equilibrium, whereC is a function of the time difference
t− tw. In particular at high κ∗ and low T (where relaxation times are very high)C(t, tw) can be
well fitted by a generalization of a known interpolation formula, often experimentally used [1],
which now depends on the waiting time, tw:

C(t, tw) � C∞

{
1 −

[
1 +

µT

Uc
ln

(
t + t0
tw + t0

)]−1/µ
}
. (4)

We found that to take µ � 1 is consistent with our data. Notice the presence of scaling
properties: for not too short times C is a function of only the ratio t/tw: C(t, tw) ∼ S(t/tw).
This is a fact in agreement with general scaling in off-equilibrium dynamics (see [15])
and in strong analogy with other systems (from glass formers to granular media [14–17]).
Experimental measurements of C(t, tw) would be very valuable.

3 Time is measured in units of an MC full lattice sweep.
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Figure 5. Time relaxation of the two-time vortex-density correlation function, C(t, tw), in the two-
dimensional ROM, recorded at T = 0.1 (κ∗ = 0.28) for the shown tw atNext = 4, 16 (respectively
inset and main frame). Continuous curves are logarithmic fits.

(This figure is in colour only in the electronic version, see www.iop.org)

In conclusion, in the context of a simple tractable model we have depicted a panorama
of magnetic properties of vortices in type-II superconductors. Even the two-dimensional
version of the model has many interesting features in correspondence with experimental results
and allows clear predictions on the nature of vortex dynamics. The origin of the slow off-
equilibrium relaxation (observed at low T ) is caused by the presence of very high free energy
barriers self-generated by the strong repulsive interaction between particles at high densities
(for κ∗ above a threshold). In this respect the pinning potential plays a minor role. For instance,
the presence of a ‘second peak’ in M is also observed in the limit Ap → 0. The second peak
does not mark the transition to a ‘glassy’ phase, but is also present in such a case. Ap sets the
position and amplitude of the reentrant order–disorder transition line, which is in turn distinct
from the second-peak locations.

At low temperatures on typical observation timescales, the system is strongly off
equilibrium. This is most clearly seen from ‘ageing’ found in two-time correlation functions.
These obey scaling properties of purely dynamical origin. An experimental check of these
results would be extremely important to elucidate the true nature of vortex dynamics.

We thank L Cohen and G Perkins for useful discussions and for the YBa2Cu4O8 data. This
work was supported by the EPSRC and PRA-INFM-99.
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